
NextCloud FaceRecognition app
Design notes

Date Summary Author/Editor

2018-07-29 Initial version Branko Kokanovic <branko at kokanovic dot org>

Matias De lellis <mati86dl at gmail dot com>

Contents
1 Introduction ... 2

2 Terminology ... 2

3 North star ... 2

4 Architecture ... 3

4.1 Library support... 3

5 Background processing .. 4

5.1 DNN models and algorithms .. 6

5.2 Processing order .. 6

5.3 Estimates.. 6

5.4 Cluster stability .. 7

5.4.1 Continuous cluster rebuild .. 7

5.4.1.1 Algorithm implementation .. 8

5.4.2 Incremental cluster build ... 9

5.5 New/change image processing ..10

5.5.1 File addition callback ...10

5.5.2 File modification callback ..11

5.5.3 File deletion callback ...11

5.6 Resource governance ..11

6 User operations ...11

7 Administrative operations ...12

8 Extended functionalities ..12

9 Proposed DB schema ...12

1 Introduction
Nextcloud FaceRecognition is/will be Nextcloud application with a goal of recognizing, analyzing and

aggregating face data in users’ images, and providing additional functionalities on top of these

information, all with built-in privacy of Nextcloud. Imagine Google Photos, but only for faces (not

detecting objects…) and in such way that your images never leave your Nextcloud instance.

Goal of this document is to sums up all thinking around this topic, present various possible

implementations with their respective tradeoffs (so next guy coming is aware some problem/solution

is being already thought of) and to serve as a poor-man functional specification.

Any comments and all yellow highlights are open questions and invites for further discussions (but, of

course, feel free to add your thoughts to anything, everything is open for discussion! 😊).

2 Terminology
User – in this document means Nextcloud user

Face descriptor – 128D vector representing face data

Person/cluster – person from images. Person is not the same as user (although it could be). One

person should have one cluster. One person can have multiple faces.

Face – image of a face. It is represented by image and coordinates of face in that image. It has

associated face descriptor. It either belongs to single person or person is not known.

Pdlib – PHP extension, binding around DLib library.

Model/DNN model – currently active neural network model on which face detection and face

description is based.

3 North star
Serves as a “vision”. Not necessari ly reflects real ity, just gives long-term guidance

User downloads FaceRecognition app from NC app store. Do we need some “cooler” name?

After installation, app immediately start working in background, crunching images. During this period

(no clusters yet), user is presented with progress bar – number of images processed, total number of

images and estimated time of finish. This progress bar is OK to exist even afterwards (when clusters

are present).

After enough data is gathered, user is given all possible clusters of people in images (ideally – no

errors😊). Errors could be:

• One person is part of multiple clusters (merge is correction action)

• One cluster contains multiple persons

User than can do various functionalities, on top of these clusters, as explained later.

Any changes, like:

• Upgrades,

• changes in algorithms (DNN model, clustering…),

• functionalities (adding support for new image type…)

Komentar [Ml1]: First comment but more off topic..
I've been thinking about this for a long time.
This library.. should be named like that?
Will it really be a full wrapper of dlib? or should we target
recognition functions. I think that calling it php-dlib is very
ambitious, and if it moves away from our requirements it
can be difficult to maintain.
Always imagine it as
https://github.com/ageitgey/face_recognition but in php.
To discuss it with goodspb or fork the project.-

Komentar [BK2R1]: Not offtopic! You are right. However,
there are IMHO two different libraries here:

• Pdlib – call it ambigous or not, full dlib coverage or just
for us, it doesn’t matter. It is stupid „binding“, same as
„php-gtk“ is, there is zero php code there! From our
(faceRecognition app) perspective, it is just a wrapper
that „gets the job done“:) As long as „goodspb“ user is
merging what we need, I would ignore the fact it is not
having full Dlib coverage;). If „goodspb“ don’t want to
merge stuff that we need, well... we could just fork:) But,
yes, calling it „php-dlib“ is very ambitous (and we don’t
care covering whole dlib, just stuff we need:), why would
we?) I tend to have pragmatic approach – do not touch if
it works. In current state, we are „almost“ there

• When you say
https://github.com/ageitgey/face_recognition, you are
probably not thinking of pdlib (as it is simple binding), I
think you are reffering more of what I call below
„libFaceRecognition“ (in section 4.1) – wrapper for pdlib
and bunch of helper functions. And more I think abou
this, and now your comment, more I think we should go
this way – split responsibility and have separate
libFaceRecognition project.

Overall, my take is – have three project with following
dependencies: FaceRecognition app -> libFaceRecognition ->
pdlib. First two are „ours“, pdlib is binding. Does this makes
sense?

Komentar [Ml3R1]: In general my doubts lie in that, the
times I work with premature libraries, just because
someone did something that is useful to me, half of the
time, they end up abandoning, and I ended up giving
supports my users, or others who used the same library,.
In this case it is worse, because dlib is much more than facial
recognition.. and surely people will ask for support of more ...

Komentar [BK4]: Other than “FaceRecognition”? I don’t
see other Nextcloud apps are very imaginative when it
comes to naming, they mostly just explain what they do
(Nextcloud Calendar, Nextcloud Notes, Nextcloud
Antivirus…) But, for example, when we have all of these
infrastructure in place, next logical step would be to detect
objects, facial expressions… Thinking in that direction, does
we need another name or not? ...

Komentar [Ml5R4]: It could be called recognition alone,
but I think we have to focus on something. Try to do well,
and with experience expand it into something generic. For
now FaceRecignition I think it is correct.

Komentar [BK6R4]: Agree!

Komentar [BK7]: what is corrective action here (asking
regarding section 1.5 Cluster stability)

https://github.com/goodspb/pdlib
https://github.com/ageitgey/face_recognition

should not:

• affect existing cluster sets (person in one cluster stays in that cluster)

• need to regenerate all the data again (like it is first-time run)

• need to recreate any of additional data user did afterwards (like merging clusters, assigning

names to clusters…)

4 Architecture
FaceRecognition follows regular design, same as any other Nextcloud application, e.g. Nextcloud app

framework is the one dictating overall architecture. One can call it “principle of least surprise”☺. There

is no other languages involved except PHP (and JS, of course), no need for advanced message queues,

no need for separate database, no need for special docker images… We should strive to work with

whatever is available in Nextcloud and to try to fit into Nextcloud ecosystem nicely.

Only notable example where this is not possible is access to Dlib models (in pdlib). If there is no pdlib

extension (common case), nothing is happening, and main page just show this info and link to github

wiki how to install pdlib extension. First time experience can be crucial here, so info message is

important.

App should work in most setups:

• App should work regardless of GPU presence

• App should work without any other dependencies (installed softwares, servers,

other PHP libraries, even pdlib.so should come bundled, if possible)

• App should work with PHP 7 (should PHP5 be ever supported, does NC supports

PHP 5?)

• App should work without cron jobs functionality being set up on Nextcloud

• Owncloud support (what is delta to support both?)

App will probably never work in following setups and that should be noted clearly in info message in

main admin view of the app:

• With PHP5

• Without cron job support

• With encryption

One additional architectural question is how want to structure apps. Do we want to have:

• one app with all functionalities (including support for object detection, emotions…),

• app exclusive for face detection and recognition/clustering, or

• bunch of smaller apps/modules – one for dealing with images, one dependent on it to detect

faces, one for face analysis, one for face clustering…

In my opinion, first or second approach seem more appropriate, as pdlib dictates our architecture.

Between first or second, I have no strong opinion (first if we find better name☺, second if we continue

as “FaceRecognition” and if app turns out to be successful).

4.1 Library support
Ideally, we should structure app to consist of GUI layer along with bindings with Nextcloud (callbacks,

DB layer…) and standalone library layer, named “libFaceRecognition” library. It is written in PHP and

can be used in other PHP systems that respect user privacy, like image galleries (Piwigo, Koken…).

Komentar [BK8]: Can app provide pdlib.so for generic
dimensions (windows/linux, x64/arm, gpu/no gpu) and
dynamically load it? As far as I can tell, PHP7 doesn’t have
ability to dynamically load extensions, without them being
already specified in php.ini?

Komentar [Ml9R8]: http://php.net/manual/es/function.d
l.php
Is deprecated and there are no alternatives..
This is going to be an important limitation for the
acceptance of the application..
But if the library works correctly it will take time but we can
compile it in most distributions (and windows ;).

Komentar [BK10R8]: Yes, too bad. Least we can do is to
bundle .so/.dll files in app and, on admin page, show
something like:

„add following lines to /etc/we_can_figure_path/php.ini:

[pdlib]
Extension=/path/to/nextcloud/app/pdlib.so
“

Komentar [Ml11R8]: Perfect. and beyond the
administration page, it is essential, a good set of README,
WIKI and FAQ
Also, I will try to keep a fedora and debian repo with this
library,.. ;)

Komentar [Ml12]: Let's wait for the nextcloud 14
requirements.
And can it be a good time to show a preview?

Komentar [BK13R12]: Not sure when 14 is out, so I guess

it is ok😊 (I wouldn’t block project on the fact that PHP5 is

not supported😉)
Regarding good times to show preview – well, every time

something works is a good time😊 As far as I am concerned,
you can show preview with what you got up to now.
However, some alpha working preview with
libFaceRecognition and whatsnot (this „different“ ...

Komentar [Ml14R12]: Until now the release date is:
2018-09-06, but still not test a single beta. Maybe we will
have to keep both versions for a good time

Komentar [Ml15]: In general it is not difficult. The api are
still very similar. But we need someone to continue using ...

Komentar [BK16R15]: Me neither. It is out then, unless

some poor soul really like it and want it supported😊

Komentar [Ml17]: Of course, we can show it to the
administrator

Komentar [Ml18R17]: I'm working on this.

Komentar [BK19R17]: Yes, you are right, admin view is
more proper place, corrected

Komentar [Ml20]: In general I prefer this option. and then
it can be extended to the first. The last one we need more
knowledge, at least from my part.

Komentar [BK21R20]: Yap, I am inclined more into this
direction too, but just wanted to write all possible options
(that’s why these documents are about – when someone, ...

libFaceRecognition exposes various APIs (add image, do cluster, merge clusters…) and do not have

persistence layer (just simply returns results back). One big uncharted/non-straightforward API to

expose would be background processing.

With standalone library, core parts of FaceRecognition could be much, much better tested (as there is

a clear API boundary, and Nextcloud is not dependency).

However, I think that, since this project is already pretty large, extracting

library this early can get quite messy. I do think that library should exist, but

I have no strong opinion that it should exist from the start. Thoughts?

5 Background processing
This is part of work of application than happens without any user interaction.

All background operations should be guarded with a check that pdlib (or any other global requirement)

is present. If they are not present, we just bail out.

Background processing should be started with cron jobs. If cron jobs are not available, there should

be NC command which is equivalent of what cron job would execute. This would allow for easier

testing and ability for this app to be used by admins without cron job support, as well as better control

of resource governance, see section Resource governance).

Should we inspect type of cron jobs and allow only system cron jobs (and possible

webcron), but never AJAX. Looks to me that this can yield more problems than

benefits. For people using AJAX, we should treat AJAX cron job type same as if cron

is not set up, and just mention that in info message at main app view.

Nextcloud cron.php have rudimentary support to cap cron job execution to 15 minutes (and 15 min is

hardcoded), but it is per app (once $job->execute() method is called, it can last as long as indefinitely).

It is our job to cap ourselves and to bail after 10-14 minutes of work.

Background processing should be split into separate smaller tasks, where each task is:

• idempotent (yields same results for same inputs)

• detectable to be finished (so we can skip it in next run and not execute it again) (this is

provided by DB, but we need to investigate whether all DB vendors on top of NC can work do

support proper transaction support. If not, this assumption needs to be changed), and

• is guaranteed to progress (any error in any task should never block or stop processing – errors

are just logged, and next step is executed)

In theory, we could parallelize some stuff, like obtaining face descriptor. Do we want to?

Background processing should look something like this:

1. Check if pdlib is installed. Bail out if it isn’t

2. Check if we are started from cron job, or from app command. If former, and if cron job is

disabled, bail out.

3. Take global lock using flock to protect us that there is only one thread doing background

processing.

4. Iterate for all users. Check if we should create cluster for someone (enough images processed,

but there is no clusters for that user). Enough is defined as “min(count(all user images), 1000

faces)”. Cluster is created with following tasks:

Komentar [Ml22]: As you mentioned before, the
nextcloud applications are very structured, and although
you can make a more generic library, I think it would make
the code more dirty than what it brings. What part do you
imagine that can be generic?

Komentar [BK23R22]: Well, if you remove dependencies
to DB and NC API, everything can be in libFaceRecognition.
Think of it as stateless library. You provide to it some
persons/faces and let it crunch the rest. For example,
libFaceRecgontion API can be (just example):
fr = new libFaceRecogntion()

fr.insertExisting(persons, faces)

fr.addFace(face)

fr.addAllFacesFromImage(image)

fr.do_processing(15min timeout)

fr.create_new_clusters()

So, Nextcloud Facerecogntion app will get persons/faces
from DB and feed everything to libFaceRecognition. It then
read data from there and updates DB. Somewhat similar to
https://github.com/ageitgey/face_recognition. I still didn’t
think a lot of API, but I hope you see where I am going with
this idea.

Komentar [Ml24R22]: Yeah that's right. I would like to
avoid the pdlib layer, for the reasons explained above, but
I'll wait to see how it turns out..

Komentar [Ml25]: Perfect. Ajax is discarded. webcron is
questionable and cron should consider some operating
limit. as you mention
I'm looking at alternatives such as mailing the activity
application.

Komentar [Ml26R25]: I refer only to the configuration to
send the summary mail.. ...

Komentar [BK27R25]: Can you explain „maining the
activity application“? I don’t get it? Maybe this is something
to be in 8. Extended functionalities)?

Komentar [Ml28]: Well..
Clustering may give different results, but in the current
approach it is only used once as an initial grouping. and then
it evolves according to the changes of the user

Komentar [BK29R28]: UserCluster.is_valid (in DB) should
block „regeneration“ of clusters if nothing is changed

Komentar [Ml30]: We have to use the Settings or in the
same database as a flag to know the state

Komentar [Ml31]: How to want, it would be interesting,
but a complexity that I will not prioritize. What I was
thinking, is to analyze every certain amount of photos, and ...

Komentar [BK32R31]: Of course, first thing first. First

make it work, than make it correct, than make it fast😊 I am
also worried that if we are „too good“, we can hog whole

machine😊

Komentar [BK33]: Any other implementation of global
lock in PHP?

Komentar [BK34]: Fix this, this is not correct, it doesn’t

make sense to compare images and faces😊

https://secure.php.net/manual/en/function.flock.php
https://github.com/ageitgey/face_recognition

a. Start chinese whispers clustering on what we got up to now

b. Once clusters are found, insert them into DB, attach generic names to them (“person-

<N>”). Find N by getting all „person-<N>“ for a given user, finding maximum and using

N+1 for next one. This seems OK solution, as it doesn’t fill the gaps (maybe user was

getting used that „person-36“ is best friend). If we can make N same as primary key

for person table, that would be better solution, but person DB table have composite

primary key.

5. Iterate for all files, for all users. Find those files which are eligible images, which are not in DB

(for currently selected model) and insert them in DB. Split commits to, let’s say 1000-10000,

so we don’t waste transaction log and we are guaranteed to progress. What are file types we

will support?

6. Enumerate all eligible images (from DB) to find faces in them (these are all images that do not

have face descriptor *and* do not have errors during processing).

7. Shuffles all those images (shuffling is important, as we don’t want to generate clusters from

user’s images if we process only directory “Alabama 2016” and “Athens 2017”, or from only

images from one period of life (only baby images, and no images as toddler/kid). See also

section about “Processing order”.

8. For each image from previous set:

a. Get image dimensions. If any dimension is >1024px, shrink image up to 1024 pixels

keeping aspect ratio (this is dependent of memory of the host). Of course, do this in

/tmp (or whatever host OS equivalent is). Double check this requirement, maybe

when I did this, I did this for nothing, maybe dlib handles images of 10000x10000.

b. Get image EXIF data (if there is and file type supports it). Rotate image if EXIF says so

(I am pretty sure that dlib doesn’t do this under the hood, and I am fairly confident

that this can only help underlying neural network, but I didn’t experiment, maybe I is

not needed)

c. Detect all faces on image by doing face detection and shape prediction. Do we need

upsampling ever? Dlib recommends it, but it is not intuitive for me why is it needed

d. BEGIN DB TRANSACTION

e. For each found face:

i. Transfer coordinates back (if image was resized and/or rotated)

ii. Obtain face descriptor.

iii. Write face descriptor to DB

f. Write that image is processed (even if there is no faces found). If there is any error

during image processing, write that too.

g. COMMIT. Only now we can commit, as we rely on DB, to provide us state (we can split

this even more atomically, so each face descriptor is task on its own, but not sure if

there is a need to complicate stuff here, unless proven that it is not working for

someone).

9. Iterate for all users. For each user:

a. Find all faces that are in DB, but are not in user’s clusters. If we detect more than 10

faces like this, or if more than 2h since any of these is passed, or if “is_valid”

(UserCluster table) is false, start new round of clustering for that user.

b. When new clusters are obtained, merge them to existing cluster, using receipt from

section Cluster stability.

Note that cluster creation and getting faces are reversed in here. Logically, it should not matter, but

user experience will be better if she/he gets cluster before all images are processed.

Once this is all developed, we should measure common case, where common case is that there is no

changes whatsoever and that there is no operations needed. This common case should execute very

fast and utilize only DB.

5.1 DNN models and algorithms
We use regular1 dlib model for face detection. Note that we should use CNN model, not HOG model,

as it is more expensive, but accuracy is far better – when it comes to use cases like Nextcloud

FaceRecognition, it is far better to spend more time, but get better results.

We also use regular1 dlib model for facе shape prediction and regular dlib model for getting face

descriptions.

We use Chinese whispers clustering for obtaining clusters.

We need a way to handle upgrades to new models and to new clustering algorithms (this includes

both new algorithms and changes in parameters of old algorithms).

Proposal to handle changes to models is to have additional field in DB that tells with which model

particular face is detected and face descriptor obtained (ideally, we could have two different columns,

but this simplifies things a bit). Since administrator choose current model, model change is destructive

operation that destroys all additional data that user created for old model (names of clusters…). Model

should be primary key in DB, so that it can remain in DB, in case admin reverts to older model.

How to cope with changes in clustering algorithm, seems like a very hard problem, but it also seems

we will change clustering algorithm almost never, do we want to bother at all handling thid?

5.2 Processing order
Images should be processed randomly (e.g. no user should have priority for image processing).

❔ Do we need fair scheduler? Like – one that tries to take images from all users in some load balanced

fashion (for example – process equal amount of images from all users… or process equal percentage

of images from all users)?

5.3 Estimates
Since we want to show user some estimate when app is done, or to just show progress when bulk of

new images is added, we need to show something like this:

Processing 123/1456 images (ETA: 5 days 15h)

However, if we don’t need all 1456 images to be able to start showing clusters to users (we need first

1000 faces only), question is how to tell that in above message? Possible idea is:

Processing 123/1456 images (ETA: 5 days 15h)

678 more faces needed to start finding people (ETA: 2d 3h)

1 “Regular” here means that we use standard models, generously computed, provided and recommended by
dlib itself, for example here and here.

http://dlib.net/files/mmod_human_face_detector.dat.bz2
http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2
http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2
http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2
http://dlib.net/ml.html#chinese_whispers
http://dlib.net/cnn_face_detector.py.html
http://dlib.net/face_clustering.py.html

There is also a question how to measure that estimated time. We need average time per image (and

average time per face2). However, this is not per user, this is per machine running Nextcloud. There

are two approaches I can think of:

• since we should just be aware of total process time and total images processed (to calculate

average time to process image), it can be saved in main app settings DB table (how is this

called in Nextcloud terminology). This seems like a logical solution, however, whenever image

is processed, we need to update app DB table to increment total process time and total images

processed, which IMHO sucks. But we do get average time in O(1).

• For each processed image, we add to corresponding DB table a column named

“processing_duration”. This column is than same as tagging that image is processed (although

I would not use this to signify that). We don’t have additional updates, but we have harder

time to figure out average, in O(n). On the plus side, we could also get medians, if we ever

want to show that (instead of averages). We can also get better control of what is average

time if we include processing with and without errors.

I am more in favor of second one.

Do we need median times or is average OK? I think average is proper.

5.4 Cluster stability
This is, IMHO, most difficult problem in this space. We need to create clusters of faces, grouping them

to “persons”, but this cluster is dynamic, living thing. We need to add faces to it, and faces can get

removed from it. However, concept of logical person doesn’t change, it must stay the same all the

time! We don’t want to end up in situation where user sees a cluster of his husband, renames it to his

name, and after one additional image is added, this cluster doesn’t exist anymore, or it is split in two

clusters, or its name is not as user renamed it…This is why this is called “cluster stability”.

To simplify, we basically have two main operations that affect clusters:

• initial creation of cluster, and

• addition of faces to it.

Now, we can either have one algorithm to handle both operations, or two algorithms. In former case,

we essentially recreate cluster each time new face is found (let’s call this “continuous cluster

rebuild”). In latter case, we use other algorithm to determine proper cluster to add face (or no cluster),

(let’s call this “incremental cluster build”)! Both approaches have good and bad sides, and choosing

here affects this whole specification, DB schema and, at the end, usability of this app!

5.4.1 Continuous cluster rebuild
Chinese whispers is a stable algorithm (seems so, no data to back this up). We could fire it again and

again, whenever new image is added/modified/deleted. It can be expensive, but it is bound in memory

and CPU usage, so performance might not be that much of a problem (and we can mitigate it a bit by

waiting for multiple faces before firing it again…). Bigger problem is how to keep the clusters stable.

We need a way to detect “diff” of clusters between runs of Chinese whispers. Put it another way – to

merge new run of Chinese whispers to existing clusters. Imagine we have following clusters:

Person ID Faces IDs

1 1,2,3,4 (largest cluster)

2 This is important, if user have 99% of scanned receipts, average time per image will give wrong estimate how

long it takes to find face😊

2 5,6,7 (middle cluster)
3 8 (smallest cluster)

and we add new face (id 9). Here are some of the outputs we can get from Chinese whispers3:

Faces IDs [1,2,3,4,5,6,7,8,9]

Output clusters A [2,2,2,2,0,0,0,1,2] New face assigned to largest cluster
Output clusters B [2,2,2,2,1,1,1,3,0] New face forms new cluster on its own

Output clusters C [0,0,0,0,1,1,1,2,2] New face assigned to smallest cluster

Output clusters D [1,1,1,1,0,0,2,3,2] New face managed to split middle cluster

Output clusters X [0,1,2,3,4,5,6,7,8] Chinese whispers take a mind of its own😊

As one can see, there are endless options. We need algorithm that can merge new outputs to old

clusters. If we can get that right, this, “continuous cluster rebuild” option could be a way to go!

Downside of this approach is that, there is no easy way to manually split clusters (e.g. if cluster merge

two persons together, user cannot say “hey, these are actually two persons”, we are at “mercy” of

Chinese whispers to do the right thing). This could be mitigated in future by introducing another layer

of indirections, on top of basic persons layer.

Table above serve only as an example, we should take into account when multiple faces are added, or

when faces get deleted…

5.4.1.1 Algorithm implementation

Goal of this algorithm is to preserve existing person IDs (cluster IDs) even after new runs of Chinese

whispers. Note that this algorithm is best effort. Idea of the algorithm is to count which new clusters

“looks like” most to old clusters (have majority of old faces) and pin them to old ones. Here is one

approach how this could be possible.

Input:

• old_cluster: dict<int, list<int>> (list of person IDs which contains list of face IDs),

example:

{"1": [1,2,3,4], "2": [5,6], "3": [7], "4": [8]}

• new_cluster: dict<int, list<int>> (same thing, but after Chinese whispers run, list of

person IDs which contains list of face IDs), example:

{"1": [8,9], "2": [1,2,3], "3": [4,5,6], "4": [7]}

Output: dict<int, list<int>>, list of person IDs which contains list of face IDs (but with merging

old and new person IDs, keeping old person IDs), example:

{"1": [1,2,3], "2": [5,6], "3": [7], "4": [8,9]}

In example above, one can observe two things happening:

• new face 9 (id: 9) was added

• clustering is executed

3 For people not knowing details of Chinese whispers output, it returns vector where index is input vector
(position of a given face description in input vectors), and value for that index is cluster (not person ID), starting
from 0.

• face 9 was added to existing cluster where face 8 is already

• face 4 moved from cluster with faces 1 and 2, to faces 5 and 6

• new clustering mixed all existing clusters

Algorithm steps:

1. For each face, create a map of person transitions. Looking at example (where keys are face

IDs, values are pairs of old and new person IDs):

{"1": [1,2], "2": [1,2], "3": [1,2], "4": [1,3], "5": [2,3], "6": [2,3],

"7": [3,4], "8": [4,1], "9": [null,1]}

2. Count obtained pairs (keys are transitions, values are counts). From example:

{"[1,2]": 3, "[2,3]": 2, "[1,3]": 1, "[3,4]": 1, "[4,1]": 1, "[null,1]": 1}

3. Create map of new person to old person transitions, based on counts obtained in step 2. If it

is a tie, pick random one. Example (keys are new person IDs, values are old person IDs):

{2: 1, 3: 2, 4: 3, 1: 4}

4. Replace new person IDs with old person IDs in new_cluster. If there is new clusters (non-

replaced), keep their ID (or make sure it is not in use), example:

{"1": [8,9], "2": [1,2,3], "3": [4,5,6], "4": [7]}

↓

{"4": [8,9], "1": [1,2,3], "2": [5,6], "3": [7]}

5.4.2 Incremental cluster build
In this case, we have one algorithm that creates initial clusters (Chinese whispers), and another

method/algorithm that continues to build clusters as faces are added/modified/deleted. It is very easy

to see that we have to be very careful that second algorithm should be equivalent operation to

recreating cluster from scratch. E.g. cluster to which face is assigned should be the same as that face

was in initial set of faces that created all clusters. Note that it might not be hard requirement, but we

should know that clustering depends in great length to initial conditions (if we start with 1000 faces

and add 1000 more later, or we start with 1500 faces and add 500 more later, we could end up with

completely different clusters!).

Implementation of this approach looks very tricky, as clusters seem to be very fluid. We need a metric

to tell us how close new face is to existing clusters. This can be either by:

• Calculating distance to centroid face descriptor (average vector obtained out of all faces/face

descriptors in a cluster)

• Calculating distance to each face descriptor in all clusters and taking minimum/5% percentile

from each cluster

• Calculating distance to N random faces in each cluster (and doing one of the above)

• Calculating distance to one (or more) “pinned” faces (that user set)

My analysis (personal data, not included here😊) tells me that distances can get ≤0.5 in first two cases

(for multiple clusters)4! In lot of cases, minimum distance does not even match the proper cluster! I

didn’t try with “pinned” faces, but I suspect that we rely on human to give us those pinned faces, and

what is obvious and “best” face for human, not necessarily means it is best face for algorithm. It also

adds penalty that user must be involved in this whole business of cluster creation.

Even if we get this right, next challenge is to determine whether new face should belong to any of

existing clusters, or form new cluster. If my analysis is correct, if we have more than 5 clusters,

probability to get any cluster to have minimum distance, or centroid distance ≤0.5 is ≥80%. This means

we can not reliable figure out if this is existing person or not, and we will be biased to create giant

clusters.

When face is deleted, it is also not clear should we “rebalance” clusters, or just leave it as-is. I guess

latter.

IMHO, this approach (“incremental cluster build”) is fool’s errand and should not be taken.

5.5 New/change image processing
App should contain callbacks when file is modified, but it was debated whether we need callback when

file is added.

Does this include shared images? Do we cluster those too? What happens when someone remove us

from share? If image belongs to multiple users, do we have one entry for it in DB per user? Can we

optimize face detection and obtaining face description, if there are?

5.5.1 File addition callback
In background tasks, we are having step 5 (iterate filesystem and add images). We can either rely on

this step for file addition, or rely on Nextcloud file addition callback.

Pros for having step 5:

• Do not rely on file addition callback (bugs, accidental misses…)

• Always eventually consistent

• No blocking of file addition callback

Cons of having step 5:

• Additional implementation burden on our side

• Heavy load every 15 minutes just to iterate for all files

Current proposal is to fully rely on Nextcloud file addition. Step 5 is required after application is

installed for the first time only (and after reinstall). We are thinking to introduce step 5 if we notice

flakiness on file addition callback, but with decreased frequency (not every background job, 15

minutes, but every 1 day or so).

Here is order of operations to be done in file addition callback:

1. Check file type of modified file (same code for as in background step, step 5)

4 It is very easy to replicate this. Take your 1000s of images. Find faces/face descriptors. Put them in Chinese
whispers and get clusters. Now, take any of the face from any cluster. Forget in which cluster it is (technically,

move it from “training” to “test” data set😊). Now, try to find proper cluster this way😉

Komentar [Ml35]: If it is shown in the gallery, it should be
analyzed.
If they stop sharing, it should be removed from the
database..
If you can avoid analyzing twice, welcome, but one entry
must remain for each user...

2. If it is image, add to to database (“Image” table). Heavy log on any error, as this is our only

chance to process this file.

Note that this operation here should not involve global lock.

5.5.2 File modification callback
When file is modified, we need to have callback (other option is to have some hashes and always

calculated hashes in background processing, but this is very expensive). Order of operations is

following:

1. Check file type of modified file (same code for as in background step, step 5)

2. If it is image, check if it is in DB. If it isn’t, it means it is still not being inserted. Just bail out.

Since we are not holding lock here, there is chance that, for some DB transaction isolation

levels, that we miss this file modification completely! Or not😊, didn’t get into details, just

wanted to turn attention.

3. If it is in DB, delete all faces assigned to it (found for this image) in DB and reset its state in DB,

so that background process can pick it up again for analysis. Also reset error column in DB

(rationale: modifying imaged might remove error that was present before). No need to reset

“processing_duration”, I think.

Note that this operation here should not involve global lock. We could block file modification and we

don’t want that.

What should we do if callback is not working for some file modification (bug in our code, bug in

Nextcloud…). We lose those changes forever?, this doesn’t seems like a smartest approach. Can we

do better here?

5.5.3 File deletion callback
When image is deleted, we should delete image entry in DB, as well as all associated faces. We should

also set “is_valid” flag in UserCluster to false, to signify that cluster for this user should be regenerated.

5.6 Resource governance
Most of operations mentioned below can use lot of resources (cpu , memory and IO, but not storage).

This is true even if GPU is not present. Resource governance (RG) is needed, especially in shared

enviroinments (hosted Nextcloud). There are several ways to achieve this:

• Offer a way for admins to turn off background processing with cron + offer Nextcloud admin

command instead, and let admins craft their own RG from outside where they will RG php

process itself, depending on host OS (cgroups, nice, job objects…)

• Offer some throttling on our side. We can define some speeds, like face detection/minute,

face descriptors/minute and chinese whispers (clustering)/minute.

Any other approaches?

Approaches above are not mutually exclusive, but since we will already have first, second one can be

done in some later dates (lower priority).

6 User operations
All functionalities in regular work

If there is no clusters for a user, we should just show some general info, like Estimates.

Komentar [Ml36]: All nextcloud relies on hooks, but also
has scheduled tasks for cleaning links, and updating files,
etc.
We can leave another task for cleaning..

Once there are clusters for users, besides new estimates, user is presented with clusters, which consist

of names and thumbnails. Who/when/how generates thumbnails? Cluster are shown by count of faces

in them.

User can then:

• rename cluster

• join clusters together

• remove faces from cluster

• delete cluster

TBW, need more details

See also section Extended functionalities.

7 Administrative operations
All functionalities exposed to administrator

Administrator of the Nextcloud instance have following operations at her/his disposal:

• Changing model

• Clearing/resetting all data

• Turning support for cron job on/off

TBW, need more details

8 Extended functionalities
Explains additional functional ities that could be possible, once basic face recognition is

working

TBW, need more details, just throwing ideas below

• Assign tags/hidden tags

• Leverage automatic upload rules (“when image of kid is uploaded, share with wife”)

• Linking other users to our clusters (instead of naming cluster “Joe”, we can link it to user “Joe”

in our Nextcloud instance)

o Replace other user’s avatar with our face of it, from our images

• What can we leverage from federations?

• We have face rectangles, we can offer user ability to find portraits/large faces in images?

9 Proposed DB schema
FaceRecognition settings (key, value), is this already provided by Nextcloud.

It would be nice to add associated query for most interesting/complex operation in document above,

based on this schema proposal.

FaceModel

 id: int,

 name: string,

 description: string

UserCluster

 id: int,

 user_id: int (FK to Nextcloud user),

 is_valid: bool,

 last_generation_time: datetime

Person

 id: int,

 user_cluster_id: int (FK to UserCluster),

 name: string,

 linked_user_id: int (FK to Nextcloud user)

Image

 id: int/guid,

 user_id: int (added later, during coding!)

 file_id/filename:int/string,

 model_id: int (FK to FaceModel),

 is_processed: bool,

 error: string,

 last_process_time: datetime,

 processing_duration: long)

Face

 id: int/guid,

 image_id: int/guid (FK to Image),

 person_id: int (FK to Person),

 left: int,

 right: int,

 top: int,

 bottom: int,

 descriptor: JSON array string/compressed array?,

 creation_time: datetime

Komentar [BK37]: Do we need id here, since user_id is
already unique?

	1 Introduction
	2 Terminology
	3 North star
	4 Architecture
	4.1 Library support

	5 Background processing
	5.1 DNN models and algorithms
	5.2 Processing order
	5.3 Estimates
	5.4 Cluster stability
	5.4.1 Continuous cluster rebuild
	5.4.1.1 Algorithm implementation

	5.4.2 Incremental cluster build

	5.5 New/change image processing
	5.5.1 File addition callback
	5.5.2 File modification callback
	5.5.3 File deletion callback

	5.6 Resource governance

	6 User operations
	7 Administrative operations
	8 Extended functionalities
	9 Proposed DB schema

